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Abstract. The eigenproblems of spin waves in a heterogeneous ferromagnetic bilayer system with periodic
boundary conditions are solved using the interface-rescaling approach. Brillouin zone mapping and the
eigenmodes of the system are investigated. We find three types of spin waves may exist in the system: the
bulk mode, the interface mode, and the perfect confined mode. The fine structure of the energy band in
the heterogeneous bilayer system is first given for the whole two-dimensional Brillouin zone. Conditions
for the existence of the interface mode are discussed. Finally, we analyze the resonant-confined spin waves
in bulk modes and their oscillating behavior.

PACS. 75.30.Ds Spin waves

1 Introduction

Magnetic multilayers have many fascinating properties
such as collective features and the giant magnetoresis-
tance effect [1,2]. Many applications utilize these prop-
erties, such as magnetic field sensors [3], spin valve read
heads for hard drives [4], magnetoresistive random access
memory [5], and so on. For faster information access, mag-
netic recording based on magnetic multilayered media is
considered an ideal data storage solution. The advantages
of these devices would be non-volatility, increased data
processing speed, decreased electric power consumption
and increased integration densities [6–9]. Gbits of infor-
mation can now be accessed in a nanosecond using these
devices, however new problems arise. When reading or
writing data at Gbits per nanosecond, the magnetic sys-
tem is excited at GHz rates [10,11] and the generation of
spin waves will strongly influence the response of magnetic
recording media. Therefore thorough study of spin-wave
eigenmodes [12–16] will be helpful to conveniently control
these devices.

Puszkarski et al. [17,18] introduced an interface-
rescaling approach (IRA). This method can exactly solve
the eigenproblems of layered magnetic materials by de-
composing the complex systems into independent sub-
systems. With this method, many authors have investi-
gated different magnetic properties of layered magnetic
materials, such as conditions for interface spin waves in
a system of ferromagnetic bilayers [19–21], the dispersion
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relations of spin waves, ferromagnetic resonance spectra
and anisotropy in a general system of ferromagnetic bi-
layers [22–27].

In references [19,20], authors studied extensively the
conditions for the existence of interface spin waves (ISW)
in various bilayer cubic systems (s.c, b.c.c and f.c.c), com-
posed of two symmetrical, semi-infinite ferromagnetic sub-
layers, applying Brillouin-zone mapping for the three in-
terface orientations (100), (110), and (111). Recently, we
use IRA to exactly solve the eigenproblems of ISW of
a (100) biferromagnetic interface and obtain analytically
the necessary and sufficient conditions for the existence of
ISW in such systems [21]. In reference [27], the authors
discussed the interface-localized mode in an ultrathin bi-
layer system. About ten years ago, we studied the bulk
spin waves of a general system of ferromagnetic bilayers
only when k|| = 0, and found the resonant-confined spin
waves only in one sublayer [22]. At the same time, we
discussed the effect of the transverse spin waves and the
uniaxial bulk anisotropy field on the dispersion relations in
a general system of ferromagnetic bilayers with the inter-
face exchange coupling constant being greater than zero
only when k|| < π/2 [24]. In this paper we shall study
the fine structure of the energy band and the eigenmodes
of spin waves on the whole two-dimensional (2D) Bril-
louin zone, discuss conditions for the existence of ISW in
two cases of the interface exchange coupling constant be-
ing greater and less than zero, and in particular analyze
the resonant-confined spin waves in bulk modes and their
oscillating behaviors in both sublayers in the same systems
as reference [24].
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2 The model and eigenmodes

Consider a simple cubic ferromagnetic bilayer slab consist-
ing of two homogeneous sublayers A and B with the bulk-
exchange interactions JA and JB, the interface exchange
coupling JAB, the spins SA and SB, and the numbers of
lattice planes NA and NB, respectively. For the sake of
simplicity, we assume the two ferromagnets still have their
periodicity in the lattice planes parallel to the interface.
Here we neglect the anisotropy in the bulk, on the inter-
face and on the surfaces, so that the inhomogeneity of the
system is assumed to come from the difference between
the interface and bulk exchange couplings JAB, JA and
JB. Under a periodic boundary condition we assume the
Heisenberg Hamiltonian consists of two terms accounting
for the isotropic nearest-neighbor (NN) exchange inter-
action and the Zeeman energy of the spins. Hence the
Hamiltonian of such system is written as:

H = −
∑

n,m

∑

i,j

J(n, i; m, j)
{

1
2
[S+(n, i) · S−(m, j)

+ S−(n, i) · S+(m, j)]

+ Sz(n, i) · Sz(m, j)
}
− µ0

∑

n,i

g(n, i)
⇀

H · ⇀

S(n, i)

(1)

with

J(N + n, i; N + m, j) = J(n, i; m, j), (2)

where N = NA+NB, and n, m are the indices of the lattice
planes, i and j are the sites in the atomic planes n and m,

g(n, i) and
⇀

H are the Landé factor and the effective field,
respectively. The interaction constants take the following
values:

J(n, i; m, j)=

⎧
⎨

⎩

JA for both sites in A,
JB for both sites in B,
JAB for one site in A and the other in B.

(3)
The spin operators satisfy the following equation:

Ŝ(n, i) · Ŝ(n, i) = S(n)[S(n) + 1)]

=
{

SA(SA + 1) for sites in A,
SB(SB + 1) for sites in B. (4)

In terms of the discussion in references [19] and [26], the
interface exchange constant JAB < 0 will not destroy the
ferromagnetic ground state in a biferromagnetic system if
an external static field is applied to the system. Therefore,
this theoretically allows the interface coupling to be less
than zero. We consider two cases with J(n, i; m, j) > 0
and <0. The ground state of the system is all spin parallel.
Using the method in reference [17], the Hamiltonian can
be easily diagonalized and the eigenequations of the spin

waves of the system can be obtained as follows:

Epkf(n, p) = [J(n, n)S(n) + J(n, n + 1)S(n + 1)
+ J(n, n − 1)S(n − 1) + µ0g(n)H ] · f(n, k)

− J(n, n + 1)
√

S(n)S(n + 1)f(n + 1, k)

− J(n, n − 1)
√

S(n)S(n − 1)f(n − 1, k),
(5)

with
f(n + N, p) = f(n, p), (6)

where

J(n, n) = 2(2 − cos kx − cos ky)J(n, i; n, i ± 1) ≡ 2γJn,
J(n, n ± 1) = J(n, i; n ± 1, i) = J(n ± 1, n).

(7)
Here Epk(>0) is the excitation energy of the spin waves,
f(n, p) an orthonormalized wave function, which satisfy
Born-Karman boundary condition. The index p in the
wave functions is the wavevector of the spin waves parallel
to the interface, and the parameter γ = γ(

⇀

k ||) = γ(kx, ky)
defined by equation (7) varies from 0 to 4. We have cho-
sen the lattice constants in both sublayers as unit length,
i.e., the excitation energy and the wavevector of the spin
waves mentioned in this paper are, respectively, the re-
duced excitation energy and the reduced wavevector.

Considering the periodic boundary condition, we as-
sume the interfaces are formed between the planes n = 1,
N and n = NA, NA + 1 for the present slabs. We will ne-
glect the indices p, k of Epk and p of f(n, p) for simplicity,
and set

f(n) =
{

fA(n), for 1 � n � NA,
fB(n), for NA + 1 � n � N.

(8)

Due to the periodic boundary condition and the inversion
symmetry in this system, the wave function f(n) in the
two sublayers may be written, respectively, as:

fA(n) =
{

BC
A cos

{
kA[n − 1

2 (NA + 1)]
}

P = 0,
BS

A sin
{
kA[n − 1

2 (NA + 1)]
}

P = 1.
(9a)

fB(n) =
{

BC
B cos

{
kB[n − NA − 1

2 (NB + 1)]
}

P = 0,
BS

B sin
{
kB[n − NA − 1

2 (NB + 1)]
}

P = 1,
(9b)

where Bj
i (i = A, B; j = C, S) is a normalization constant,

P represents the even parity (P = 0) or the odd parity
(P = 1), kA and kB are, respectively, the wave-vector
components perpendicular to the interfaces between the
sublayers A and B. When kA and kB are both real, both
complex (iq or π ± iq) (where q > 0), or one is real and
the other is complex, we can obtain the bulk mode (BM),
the interface mode (IM) and the perfect confined mode
(PCM), respectively.

We define the interface-rescaling coefficient R as fol-
lows [22]:

fB(N) = RfA(1),
fB(NA + 1) = RfA(NA). (10)
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Inserting equation (10) into equation (5) and using the
periodic boundary condition, one can obtain:

E = 2JASA(1 + γ − cos kA) + µ0gAH

= 2JBSB(1 + γ − cos kB) + µ0gBH, (11)

and

cot[ 12ki(Ni + 1)] =
− sinki

cos ki − µ−1
i

P = 0, (12a)

tan[12ki(Ni + 1)] =
sin ki

cos ki − µ−1
i

P = 1, (12b)

where the index i represents A or B, and the parameters
µA and µB are given by:

µA = 1 − JABSB

JASA
(1 − α−1R), (13)

µB = 1 − JABSA

JBSB
(1 − αR−1), (14)

where
α =

√
SB/SA. (15)

Solving equations (11) and (12), one can obtain kA, kB

and R.
The ratio of coefficients BB to BA is determined by

equation (10) and reduces to the normalization constants

ρC = BC
B

/
BC

A = R cos[ 12kA(NA − 1)]
/
cos[ 12kB(NB − 1)],

(16a)
ρS = BS

B

/
BS

A = −R sin[12kA(NA − 1)]
/
sin[ 12kB(NB − 1)].

(16b)
Equation (11) shows that the excitation energy of the sys-
tem has a simple translation when considering the Zeeman
energy. So, in discussions below we assume the Zeeman
energy is zero for the sake of simplicity.

3 The energy band fine structure of the 2D
Brillouin zone

In this section, we analyze the energy band configura-
tion of the longitudinal spin waves with varying transverse
wave vector

⇀

k || along the high-symmetry directions of the
2D Brillouin zone (to see Fig. 1), and first give the fine
structure of the energy band on the whole 2D Brillouin
zone, that is to say, the evolvement curve of every branch
of eigenmode on the 2D BZ. Without any loss of the gen-
erality we assume JASA > JBSB and choose the value
of the parameter JA, JB, JAB, SA, SB, NA and NB as,
respectively, 1.0, 1/2, 2.0, 1, 1, 31 and 15.

We have calculated numerically the eigenproblems of
the system corresponding to the above data. The numeri-
cal results show that the total number of spin-wave modes
of the system is 46 (=NA + NB). For

⇀

k || = 0, the num-
ber of BMs is 30 in which there are 14 odd and 16 even
parity modes. The number of PCMs in the sublayer A
is 14, among which there are equal numbers of odd and

Fig. 1. The BZM of the magnetic bilayer corresponding to
JA, JB , JAB , SA, SB, NA and NB are, respectively, 1.0, 1/2,
2.0, 1, 1, 31 and 15: the higher energy band is subband A,
the lower energy band is subband B, the highest dashed line
denotes the optic-optic type IM and the dashed line inside
the gap denotes the acoustic-optic type IM. Here, Edenotes
the reduced excitation energy of the longitudinal spin waves,
and k|| denotes the reduced wavevector of the transversal spin
waves. The 2D Brillouin zone of the bilayered system is plotted
at the top left corner of the BZM, where ∆ line, Y line and Σ
line are three high-symmetry paths.

even parity modes. The total number of IMs of the optic-
optic type is 2 with different parities. All these results are
similar to those in reference [22].

Only the energy band of the odd parity modes is plot-
ted with varying

⇀

k || along the high-symmetry paths of 2D
Brillouin zone in Figure 1 because that of the even parity
modes is similar to the odd parity modes. The higher sub-
band consists of PCMs in sublayer A, the lower subband
is composed of PCMs in the sublayer B and the overlap of
the subbands consists of BMs. The highest branch (dashed
line) is IM of the optic-optic type, and the branch (dashed
line segment) within the gap is IM of the acoustic-optic
type. BMs are all standing waves that can freely propa-
gate both in sublayers A and B. PCMs are standing waves
in their own sublayer, while in the other sublayer they are
interface decay waves that only can exist in the interface.
IMs are interface decay waves in both sublayers. As the

⇀

k ||
value increases, seven branches of the higher energy BMs
are transformed into the lower energy PCMs in sublayer
A, while the other seven branches of BMs are transformed
into the PCMs in sublayer B. As the

⇀

k || value sequen-
tially increases, the highest branch of PCMs in sublayer
B coming from BMs is transformed into the IM of the
acoustic-optic type inside the gap.

Note that the IM of the acoustic-acoustic type cannot
appear below both subbands, which is agreement with the
results in references [21] and [25].

4 The conditions for the existence of ISW

In this section we will consider the conditions for the ex-
istence of acoustic-optic type and optic-optic type ISWs.
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Fig. 2. The acoustic-optic type IMs over the 2D Brillouin zone
corresponding to JAB , respectively, equal to −0.1,−2,−5, 5, 3
and 2 from top to bottom. The solid lines denote IMs of JAB <
0 and the dotted lines denote IMs of JAB > 0. The other
parameters are as for Figure 1.

Firstly, the conditions for the existence are related
to the interface exchange constant JAB. For JAB > 0,
only when JAB leads to strong ferromagnetic coupling
can ISWs appear [21,25]. For JAB < 0, ISWs also may
appear in a semi-infinite symmetrical system of ferromag-
netic bilayers [19]. On the condition of all parameters be-
ing the same as above, we find a branch of optic-optic type
IMs appears when JAB > 1.27 and it may exist over the
whole Brillouin zone when JAB > 1.61. Another branch
of acoustic-optic type IMs also appears when JAB > 1.76
in the finite asymmetrical system of ferromagnetic bilay-
ers. But for JAB < 0, no optic-optic type ISWs can ap-
pear while a branch of acoustic-optic type ISWs appears
when JAB < −0.06. In Figure 2, six branches of acoustic-
optic type IMs are plotted corresponding, respectively, to
JAB = −0.1,−2,−5, 5, 3, and 2 from top to bottom. We
find there is not the acoustic-optic type IM on the ∆ region
of 2D Brillouin zone. The acoustic-optic type IM (dotted
lines) appears in the vicinity of the top of subband B when
JAB > 0, and it moves to the interior of the gap as JAB

increases. While the acoustic-optic type IM (solid lines)
appears in the vicinity of the bottom of subband A when
JAB < 0, it also moves to the interior of the gap as |JAB|
increases. This means the high energy subband easily at-
tracts the antiferromagnetic interface coupling IM, and
the low energy subband easily attracts the ferromagnetic
interface coupling IM. When interface exchange coupling
increases, the interface’s attraction to IM increases too, so
the IM moves to the interior of the gap. In Figure 3, three
optic-optic type IM branches are plotted corresponding,
respectively, to JAB = 2, 1.5 and 1.3 from top to bottom.
The results indicate that optic-optic type IM can only ap-
pear in the vicinity of the Γ point when JAB is small, but
may exist over the whole Brillouin zone when JAB > 1.61.
By the same reasoning as above, the IM moves away from
subband A as JAB increases.

Fig. 3. The optic-optic type IMs of the 2D Brillouin zone
corresponding to JAB being, respectively, 2, 1.5 and 1.3 from
top to bottom. The other parameters are as for Figure 1.

Fig. 4. The BZM of the magnetic bilayer corresponding to JB

and SB , set to, respectively, 1.0 and 1/2, the other parameters
are as for Figure 1. The highest dashed line denotes the optic-
optic type IM and the dashed line inside the gap denotes the
acoustic-optic type IM.

Secondly, the conditions for existence are also related
to the character of the magnetic layers A and B. For ex-
ample, when the value of JB is interchanged with that
of SB and the other parameters are kept unchanged, we
find the BZM (see Fig. 4) is slightly different from that
of Figure 1. The configurations of two subbands in Fig-
ures 1 and 4 are the same on the whole because JASA

and JBSB are unchanged. However, the optic-optic type
IM (dashed lines above) appears in the vicinity of the Γ
point on a 2D Brillouin zone. It is transformed into the
PCM in sublayer A, and the region becomes large where
the acoustic-optic type IM (dashed line within the gap)
exists. Further study shows the optic-optic type IM ap-
pears when JAB > 1.90 and it may exist over the whole
Brillouin zone when JAB > 2.66. The acoustic-optic IM
appears when JAB > 1.30 or JAB < −0.13, and the IMs
move away from the subbands as |JAB | increases. In ad-
dition, sublayer thickness NA and NB also influence IM.
We do not discuss in further detail here.
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Fig. 5. Sixteen branches of the lower energy modes on the ∆
region of 2D Brillouin zone. The line with circles and crosses
denotes the 9th mode, which is the BM when kx � 2.520 and is
the PCM in the sublayer A when kx > 2.520. Circles represent
the resonance points in sublayer B and crosses represent the
resonance points in sublayer A.

Finally, it is worth mentioning there are optic-optic
type IMs and acoustic-optic type IMs in the even parity
energy band, which are completely degenerate with those
of the odd parity energy bands.

5 Resonant-confined spin waves in the bulk
modes

In this section, we note that resonant-confined spin waves
(RCSW) may exist in the bulk modes and the RCSWs
may appear in both sublayers.

In Figure 1 (or Fig. 4), the variation of bulk modes
with

⇀

k || is completely different from the perfect confined
modes. In order to clearly show the difference, in Figure 5
we only plot 16 branches of the lower energy modes over
the ∆ region of the 2D Brillouin zone. The line labeled
circles and crosses denotes the 9th eigenmode, which is
the BM when kx � 2.520 and is transformed into the
PCM in the sublayer A when kx > 2.520. The PCMs in
A or B show cosine behavior with varying kx, but the
BMs do not have the clearly functional relation with kx.
BMs sometimes tend to the direction parallel to the sub-
band A, and sometimes tend to the direction parallel to
the subband B as kx varies. When the frequencies of BMs
are very close to the intrinsic frequencies of the sublayer
material A (or B), RCSWs may appear. This kind of the
spin wave is different from the extended bulk waves. Its
amplitude is much higher in the corresponding sublayer
than in that of the other sublayer. The spin waves of the
9th mode of the odd parity are plotted in Figure 6 cor-
responding, respectively, to kx = 0.451, 0.902 and 1.339
over the ∆ region of 2D Brillouin zone from (a) to (c).
In the figure, f denotes the amplitude of the longitudi-
nal spin waves, n denotes the number of atomic planes
parallel to the interface, n = 1 to 31 is the sublayer A

Fig. 6. The spin waves of the 9th mode of the odd parity corre-
sponding, respectively, to kx = 0.451, 0.902 and 1.339 from (a)
to (c) in the ∆ region of the 2D Brillouin zone. (a) Denotes the
extended bulk wave; (b) and (c) denote the resonant-confined
spin waves. Here f denotes the amplitude of the longitudinal
spin waves, n denotes the number of the atomic planes parallel
to the interface.

and n = 32 to 46 is the sublayer B. Figure 6a shows the
extended bulk wave, whose amplitude is essentially the
same in both sublayers. As kx increases, the RCSW in sub-
layer B (see Fig. 6b) appears and the RCSW in sublayer A
(see Fig. 6c) also appears with kx sequentially increasing.
Moreover, one can find oscillating behavior of RCSWs,
that is to say, the RCSWs in sublayer A and B appear al-
ternately as kx increases. This is because the frequencies of
BMs are sometimes very close to the intrinsic frequencies
of the sublayer material A and sometimes very close to the
intrinsic frequencies of the sublayer material B. For exam-
ple, the resonance points in the sublayer B are represented
in Figure 5 by circles for the 9th mode corresponding, re-
spectively, to kx = 0.902, 1.681, and 2.252, while those
in the sublayer A are represented by crosses correspond-
ing, respectively, to kx = 1.339, 1.982 and 2.482. One can
find circles alternate with crosses. There is the analogous
phenomenon for the other BMs in this system.
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6 Conclusions

In conclusion, we find that there are three types of spin
waves eigenmodes, namely, BMs, PCMs and IMs, in a
general ferromagnetic bilayer system, which give the fine
structure of the energy band over the whole 2D Brillouin
zone. In BZM, either 0, 2 or 4 branches of IMs may ex-
ist, consisting of an equal number of odd and even parity
modes which are completely degenerate. IMs are influ-
enced by factors such as JA, SA, JB , SB, NA, NB and
JAB. As |JAB| increases, IMs move away from the sub-
bands because they become strongly attracted to the in-
terface. In BMs, RCSWs may exist when BMs tend to the
direction parallel to the subband A or B and the RCSWs
in the sublayer A alternate with those in the sublayer B
as

⇀

k || varies.
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